Measles virus-induced immune suppression in the cotton rat (Sigmodon hispidus) model depends on viral glycoproteins.

نویسندگان

  • S Niewiesk
  • I Eisenhuth
  • A Fooks
  • J C Clegg
  • J J Schnorr
  • S Schneider-Schaulies
  • V ter Meulen
چکیده

Immune suppression during measles accounts for most of the morbidity and mortality associated with the virus infection. Experimental study of this phenomenon has been hampered by the lack of a suitable animal model. We have used the cotton rat to demonstrate that mitogen-induced proliferation of spleen cells from measles virus-infected animals is impaired. Proliferation inhibition is seen in all lymphocyte subsets and is not dependent on viral replication. Cells which express the viral glycoproteins (hemagglutinin and fusion protein) transiently by transfection induce proliferation inhibition after intraperitoneal inoculation, whereas application of a recombinant measles virus in which measles virus glycoproteins are replaced with the vesicular stomatitis virus G protein does not have an antiproliferative effect. Therefore, in vivo expression of measles virus glycoproteins is sufficient and necessary to induce inhibition of lymphocyte proliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cotton Rat (Sigmodon hispidus) Signaling Lymphocyte Activation Molecule (CD150) Is an Entry Receptor for Measles Virus

Cotton rats (Sigmodon hispidus) replicate measles virus (MV) after intranasal infection in the respiratory tract and lymphoid tissue. We have cloned the cotton rat signaling lymphocytic activation molecule (CD150, SLAM) in order to investigate its role as a potential receptor for MV. Cotton rat CD150 displays 58% and 78% amino acid homology with human and mouse CD150, respectively. By staining ...

متن کامل

Modeling Human Respiratory Viral Infections in the Cotton Rat (Sigmodon hispidus).

For over three decades, cotton rats have been a preferred model for human Respiratory Syncytial Virus (RSV) infection and pathogenesis, and a reliable model for an impressive list of human respiratory pathogens including adenoviruses, para influenza virus, measles, and human metapneumo virus. The most significant contribution of the cotton rat to biomedical research has been the development of ...

متن کامل

Measles virus-induced immunosuppression in cotton rats is associated with cell cycle retardation in uninfected lymphocytes.

Measles virus (MV)-induced immune suppression during acute measles often leads to secondary viral, bacterial and parasitic infections which severely complicate the course of disease. Previously, we have shown that cotton rats are a good animal model to study MV-induced immune suppression, where proliferation inhibition after ex vivo stimulation of cotton rat spleen cells is induced by the viral...

متن کامل

HIV type-1 infection of the cotton rat (Sigmodon fulviventer and S. hispidus).

Cotton rats (Sigmodon hispidus and S. fulviventer) are susceptible to many viruses that infect humans (e.g., poliovirus, respiratory syncytial virus, influenza virus, adenovirus, and parainfluenza virus) and have been influential in developing therapeutic clinical intervention strategies for many viral infections of man. This study set out to determine whether cotton rats are susceptible to inf...

متن کامل

Enterovirus D-68 Infection, Prophylaxis, and Vaccination in a Novel Permissive Animal Model, the Cotton Rat (Sigmodon hispidus)

In recent years, there has been a significant increase in detection of Enterovirus D-68 (EV-D68) among patients with severe respiratory infections worldwide. EV-D68 is now recognized as a re-emerging pathogen; however, due to lack of a permissive animal model for EV-D68, a comprehensive understanding of the pathogenesis and immune response against EV-D68 has been hampered. Recently, it was show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 71 10  شماره 

صفحات  -

تاریخ انتشار 1997